Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38542399

RESUMEN

Mesenchymal Stromal Cells (MSCs)-based therapies are rapidly gaining interest in veterinary medicine. Cellular therapy represents a new challenge for practitioners and requires precise coordination between the cell processing laboratory and the veterinary clinic. Cryopreservation is the best method to provide fast, in-time, and long-distance delivery of cells for therapeutic applications. However, potentially toxic cryoprotectants and xenobiotic products make the direct administration of cells impracticable for patients. Alternatively, the cells may be resuspended in a ready-to-use vehicle and shipped to the veterinary clinic. In this study, two nutrient-poor vehicles (physiologic saline and ringer lactate solutions) and two nutrient-rich vehicles (the releasate derived from autologous Platelet Poor Plasma and Platelet Rich Plasma) were tested on adipose tissue-derived canine MSCs (AD-MSCs). AD-MSCs stored for 2, 4, or 24 h in the different media were compared regarding mortality, metabolic activity, and replicative capacity. Furthermore, antioxidant activity and the pattern of expression of genes related to AD-MSCs function were performed following 24 h of storage. The results showed that all the different vehicles preserve cell vitality and replication following short-term storage. In long-term storage, the vehicle and cell density affect cell vitality, proliferation, and gene expression (CCL-2, CXCR-4, and TSG-6). Nutrient-rich vehicles seem better suited to preserve cell functionalities in this contest.


Asunto(s)
Tejido Adiposo , Células Madre Mesenquimatosas , Humanos , Animales , Perros , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Crioprotectores/farmacología , Células Madre Mesenquimatosas/metabolismo , Proliferación Celular , Células Cultivadas
2.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396899

RESUMEN

The Second International StemNet (Federation of Stem Cell Research Associations) meeting took place on 18-20 October 2023 in Brescia (Italy), with the support of the University of Brescia and the Zooprophylactic Institute of Lombardy and Emilia Romagna. The program of the meeting was articulated in nine sections: (1) Biomedical Communication in Italy: Critical Aspects; (2) StemNet Next Generation Session; (3) Cell-Free Therapies; (4) Tips and Tricks of Research Valorisation; (5) Stem Cells and Cancer; (6) Stem Cells in Veterinary Applications; (7) Stem Cells in Clinical Applications; (8) Organoids and 3D Systems; (9) induced pluripotent stem cells (iPCS) and Gene Therapy. National and International speakers presented their scientific works, inspiring debates and discussions among the attendees. The participation in the meeting was high, especially because of the young researchers who animated all the sessions and the rich poster session.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neoplasias , Humanos , Neoplasias/terapia , Italia , Terapia Genética , Tratamiento Basado en Trasplante de Células y Tejidos
3.
Environ Toxicol Pharmacol ; 104: 104294, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37838301

RESUMEN

Plastic is an important environmental issue and a more critical aspect concerns plastic fragments, mainly in term of nanoplastics (NPs). We demonstrated that NPs interfere with reproductive and adipose stromal cells. Since several research underlined an increased cardiovascular risk due to NPs, present study was undertaken to investigate their effect on aortic endothelial cells (AOC). We explored the specificity of their interaction with endothelial cells, quantifying their load in treated cells. Then, NPs effect was assessed on cell growth, generation of free radicals and antioxidant defence. Our data demonstrate that NPs colocalize with AOC. We found a significant (p < 0.01) increase both in metabolic activity and Vascular Endothelial Growth Factor (VEGF) production (p < 0.01). Redox status appeared to be disrupted (p < 0.05) by NPs. Taken together, the normal function of cultured AOC appeared negatively affected by AOC. Since NPs have been detected in blood, our present data appear of particular interest.


Asunto(s)
Células Endoteliales , Factor A de Crecimiento Endotelial Vascular , Factor A de Crecimiento Endotelial Vascular/metabolismo , Microplásticos , Estrés Oxidativo , Aorta
4.
Animals (Basel) ; 13(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37570265

RESUMEN

Aural hematoma is a common pathological condition in veterinary practice with a high incidence rate in dogs. Drainage, corticosteroid injections, and surgical approaches represent the common treatments in these clinical cases. However, surgery leaves visible signs and is usually correlated with recurrence, scars, and deformation of the treated pinna. For this reason, more effective and less invasive methods have been proposed over the years. Platelet-Rich Plasma (PRP) is one of the most promising options due to its pro-regenerative properties and capability to modulate the inflammatory state. The present work reports 12 cases of canine aural hematoma treated with PRP. The PRP treatment was combined with an ultrasound evaluation of the pinna to detect and treat all involved septa. The results show that relatively large volumes (2 mL) of PRP associated with an ultrasound guide are safe and efficacious in the treatment of canine aural hematoma requiring a maximum of two infiltrations, both in acute and chronic conditions. All the patients recovered their normal ear thickness (compared with the controlateral one) without relapses, averaging 38.5 days from their first treatment (10-90 days; SD: 24.7). The key role of PRP combined with a tailored diagnosis process carried out by the veterinarian, which included using an ultrasound system and the proper bandage, suggests that this approach may represent a valid alternative to surgery and corticosteroids.

5.
Biomolecules ; 12(12)2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36551323

RESUMEN

Irisin is a hormone able to reproduce some of the positive effects of physical activity and diet. Recently, we demonstrated the presence of Irisin at the ovarian level as a potential physiological regulator of follicular function. Adipose tissue is crucial for reproductive function through its metabolic activity and the production of adipokines. At present, the exact nature of adipocyte precursors is still under debate, but an important role has been assigned to the population of adipose tissue mesenchymal stromal cells (ASCs) of perivascular origin. It should be noted that, when appropriately stimulated, ASCs can differentiate into preadipocytes and, subsequently, adipocytes. Therefore, this present study was undertaken to explore the potential effect of Irisin on ASCs, known for their high differentiative potential. Since Irisin expression in ASCs was confirmed by PCR, we tested its potential effects on the main functional activities of these cells, including proliferation (BrdU uptake); metabolic activity (ATP production); redox status, evaluated as the generation of free molecules such as superoxide anion and nitric oxide; and scavenger activities, assessed as both enzymatic (superoxide dismutase) and non-enzymatic antioxidant power. Moreover, we tested the effect of Irisin on ASCs adipogenic differentiation. BrdU uptake was significantly (p < 0.001) inhibited by Irisin, while ATP production was significantly (p < 0.05) increased. Both superoxide anion and nitric oxide generation were significantly increased (p < 0.001) by Irisin, while scavenger activity was significantly reduced (p < 0.05). Irisin was found to significantly (p < 0.05) inhibit ASCs adipogenic differentiation. Taken together, the present results suggest a potential local role of Irisin in the regulation of adipose tissue function.


Asunto(s)
Fibronectinas , Superóxidos , Animales , Porcinos , Fibronectinas/metabolismo , Superóxidos/metabolismo , Óxido Nítrico/metabolismo , Bromodesoxiuridina/metabolismo , Tejido Adiposo/metabolismo , Células del Estroma , Adenosina Trifosfato/metabolismo
6.
Animals (Basel) ; 11(11)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34828003

RESUMEN

In recent years, mesenchymal stromal cells (MSCs) have shown promise as a therapy in treating musculoskeletal diseases, and it is currently believed that their therapeutic effect is mainly related to the release of proteins and extracellular vesicles (EVs), known as secretome. In this work, three batches of canine MSC-secretome were prepared by standardized processes according to the current standard ISO9001 and formulated as a freeze-dried powder named Lyosecretome. The final products were characterized in protein and lipid content, EV size distribution and tested to ensure the microbiological safety required for intraarticular injection. Lyosecretome induced the proliferation of adipose tissue-derived canine MSCs, tenocytes, and chondrocytes in a dose-dependent manner and showed anti-elastase activity, reaching 85% of inhibitory activity at a 20 mg/mL concentration. Finally, to evaluate the safety of the preparation, three patients affected by bilateral knee or elbow osteoarthritis were treated with two intra-articular injections (t = 0 and t = 40 days) of the allogeneic Lyosecretome (20 mg corresponding 2 × 106 cell equivalents) resuspended in hyaluronic acid in one joint and placebo (mannitol resuspended in hyaluronic acid) in the other joint. To establish the safety of the treatment, the follow-up included a questionnaire addressed to the owner and orthopaedic examinations to assess lameness grade, pain score, functional disability score and range of motion up to day 80 post-treatment. Overall, the collected data suggest that intra-articular injection of allogeneic Lyosecretome is safe and does not induce a clinically significant local or systemic adverse response.

7.
Front Vet Sci ; 8: 704567, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540933

RESUMEN

A ventilated thermoplastic mesh bandage was used for the post-operative management of large soft tissue defects in three dogs. Once the granulation tissue appeared, the wounds were treated with liquid or jellified autologous platelet concentrates, Platelet Rich Plasma (PRP) and Platelet Lysate (PL), to improve the wound healing process. After cleaning the wound with sterile physiological solution, a dressing was performed with several layers of cotton. A window through the layers of cotton was opened above the wound. Then, the platelet concentrate was topically applied, and the bandage was completed by placing, over the access window, a ventilated thermoplastic mesh modeled according to the size and shape of the wound. After 24 h, it was replaced by a low adhesion bandage. The thermoplastic mesh avoids the direct contact between the wound and the external layers of the bandage, preventing the drainage of the topical agent and the removal of the growing healthy granulation tissue. The bandage proposed in this study is easily applied by the veterinarian and well-tolerated by the animal, ensuring high welfare standards in stressed patients presenting compromised clinical conditions.

8.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200627

RESUMEN

In the last decades, it has been demonstrated that the regenerative therapeutic efficacy of mesenchymal stromal cells is primarily due to the secretion of soluble factors and extracellular vesicles, collectively known as secretome. In this context, our work described the preparation and characterization of a freeze-dried secretome (Lyosecretome) from adipose tissue-derived mesenchymal stromal cells for the therapy of equine musculoskeletal disorder. An intraarticular injectable pharmaceutical powder has been formulated, and the technological process has been validated in an authorized facility for veterinary clinical-use medicinal production. Critical parameters for quality control and batch release have been identified regarding (i) physicochemical properties; (ii) extracellular vesicle morphology, size distribution, and surface biomarker; (iii) protein and lipid content; (iv) requirements for injectable pharmaceutical dosage forms such as sterility, bacterial endotoxin, and Mycoplasma; and (v) in vitro potency tests, as anti-elastase activity and proliferative activity on musculoskeletal cell lines (tenocytes and chondrocytes) and mesenchymal stromal cells. Finally, proteins putatively responsible for the biological effects have been identified by Lyosecretome proteomic investigation: IL10RA, MXRA5, RARRES2, and ANXA1 modulate the inflammatory process RARRES2, NOD1, SERPINE1, and SERPINB9 with antibacterial activity. The work provides a proof-of-concept for the manufacturing of clinical-grade equine freeze-dried secretome, and prototypes are now available for safety and efficacy clinical trials in the treatment of equine musculoskeletal diseases.

9.
Cells ; 9(12)2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276432

RESUMEN

Mesenchymal stem cells (MSCs) have been recently introduced in veterinary medicine as a potential therapeutic tool for several pathologies. The large-scale in vitro expansion needed to ensure the preparation of a suitable number of MSCs for clinical application usually requires the use of xenogeneic supplements like the fetal bovine serum (FBS). The substitution of FBS with species-specific supplements would improve the safety of implanted cells, reducing the risk of undesired immune responses following cell therapy. We have evaluated the effectiveness of canine adipose tissue-derived stromal vascular fraction (SVF) and MSCs (ADMSCs) expansion in the presence of canine blood-derived supplements. Cells were cultured on traditional plastic surface and inside a 3D environment derived from the jellification of different blood-derived products, i.e., platelet-poor plasma (PPP), platelet-rich plasma (PRP), or platelet lysate (PL). PPP, PRP, and PL can contribute to canine ADMSCs in vitro expansion. Both allogeneic and autologous PPP and PL can replace FBS for ADMSCs culture on a plastic surface, exhibiting either a similar (PPP) or a more effective (PL) stimulus to cell replication. Furthermore, the 3D environment based on homospecific blood-derived products polymerization provides a strong stimulus to ADMSCs replication, producing a higher number of cells in comparison to the plastic surface environment. Allogeneic or autologous blood products behave similarly. The work suggests that canine ADMSCs can be expanded in the absence of xenogeneic supplements, thus increasing the safety of cellular preparations. Furthermore, the 3D fibrin-based matrices could represent a simple, readily available environments for effective in vitro expansion of ADMSCs using allogeneic or autologous blood-products.


Asunto(s)
Tejido Adiposo/metabolismo , Medios de Cultivo/metabolismo , Fibrina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Plásticos/metabolismo , Xenobióticos/farmacología , Tejido Adiposo/efectos de los fármacos , Animales , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Técnicas de Cultivo de Célula/métodos , Perros , Células Madre Mesenquimatosas/efectos de los fármacos , Plasma Rico en Plaquetas/efectos de los fármacos , Plasma Rico en Plaquetas/metabolismo , Suero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...